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Conditional event algebras and

conditional probability logics

PHILIP G. CALABRESE - 1. R. GOODMAN *

ABSTRACT. ~ The paper is in two parts. In Part I, the somewhat mutually
inconsistent treatments of “if - then - ” by logic and probability is recounted and’
used to motivate a formal axiomatic development of conditional propositions in
terms of partially-defined, measurable characteristic functions on a sample space.
The characteristic function of a conditional proposition (alb), “a given b”, indicates
for each instance w in the sample space whether 1) (a]b) applies and is true for
w, or 2) (a|b) applies and is false for w, or 3) (alb) is inapplicable since b is false.
Four 3-valued truth tables (always available by a representation theorem of L.R.
Goodman) characterize the “and”, “or”, “not” and “if - then - ” operations of this
algebra and capture the third truth state of “inapplicable” for conditional propo-
sitions. This leads to an extension of the fundamental theorem of boolean algebra
to conditional propositions. Finally, a set of four 4-valued truth tables is offered as
- a candidate for capturing both the “inapplicable” and “unknown” truth states.

Part II scopes out some of the key issues giving rise to conditional event al-
gebras. A rigorous formulation of the basic problem is presented together with a
listing of natural properties which such conditional event algebras may be expected
to satisfy. It is pointed out that most approaches to the issue have treated con-
ditional events as -in effect - as generalized types of boolean functions. A brief
review is presented of the two leading candidate algebras proposed by each of those
authors. However, despite a number of desirable properties these enjoy, there are
several difficulties that also occur, including formulation of higher order condition-
ing, modeling of independent information, and formulation of conditional random
variables. A new approach is proposed using a countable product space construc-
tion in which all of the above issues, and more, are successfully treated. The major
drawback in implementing this approach is that calculations increase exponentially
in comparison to that enjoyed by the former approaches.

KeEy Wonrbps: Conditional events, conditional propositions, conditional prob-
ability, conditional logic, deduction, non-monotonic, artificial intelligence, expert
systems, three-valued logic, truth-tables.

(*) Naval Command, Control and Ocean Surveillance Center, RDT & E Divi-
sion, Code 421, 53140 Systems St, RM 230, San Diego, CA 92152 - 7550
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Part I

An extension of the fundamental theorem
of boolean algebra to conditional propositions

Philip G. Calabrese

1. Introduction.

The Treatment of “if - then - ” in Logic Versus Probability

Prior to 1933, when A. N. KoLMoGORoV [18] first published his cele-
brated axioms for probability theory, he had found that the standard treat-
ment of “if - then -” in logic was inconsistent with the laws of probability.
Since there was no probabilistically acceptable algebra of “if - then - ” (con-
ditional propositions), Kolmogorov simply defined a conditional probability
without defining any underlying conditional propositions. Nor did he de-
fine boolean-like operations on such conditionals. To this day there remains
this remarkable breach between conditional logic and conditional probabil-
ity with respect to “if - then - ” statements: In standard 2-valued logic,
conditional statements like “if b then a” are routinely reduced to the state-
ment “either a or not b”, the so-called material conditional. For instance,
when proving a theorem of the form “if b then a”, a mathematician can
prove that in all cases “either a is true or b is false”. Since mathematical
proofs require that there be no exceptions (2-valued logic) this reduction
works out fairly well. But as soon as the propositions involved become un-
certain, the above reduction can greatly distort the standard probabilistic
measure of the partial truth of a conditional statement “if b then a”.

In probability theory, “if b then a” has the conditional probability
P(alb), which is just the ratio of the probability of “a and b” to the proba-
bility of “6”. In symbols, P(a|b) = P(a and b)/P(b). But this probability is
generally much less(!) than the probability of the statement “either a or not
b” routinely used in 2-valued logic to reduce “if b then a”. The conditional
probability can even be close to zero while P(a or not b) is close to one. The
most extreme situation occurs when the conditional probability is undefined
(because the premise “b” has probability zero) while the statement “either

(D The difference is P(a or not b)— P(a|b) = (1— P(b))(1— P(a|b)) as expressed
by P. CALABRESE [3]. So P(a or not b) = p(a|b) if and only if either P(b) =1 or
P(a]b) = 1. For an'elaboration see P. CALABRESE [4] and [5], p. 682.
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a or not b” is a certainty no matter what the truth of “a” (because “not
b is true). Furthermore, LEWIS [19] actually proved that except for trivial
Boolean algebras B, any function or operation f of boolean propositions
“a” and “b” with the property that P(f(a,b)) = P(a|b) for all @ and b in
B with P(b) # 0, must have its image, f(a,b), outside the initial boolean
algebra B.

Being aware of the above logic-probability breach, various author’s (G.
BooLE [2], S. MAzZURKIEWICZ [20-22], B. DE FINETTI [9], G. SCcHAY [29],
T. HAILPERIN [17], E. ADAMSs [1], N. NiLssoN [25], P. CALABRESE [4-8],
I.LR. GooDMAN et al [12-16]), H.T. NGUYEN and G.S. ROGERs [24] and
E.A. WALKER [30]) have attempted to define operations on conditional
propositions that are consistent with both logic and probability. These ef-
forts have resulted in several different algebras of conditional propositions
and also several ways to represent conditional propositions, an area of re-
search that has recently been called conditional event algebra/conditional
probability logic (CEAPL).

Overview. First propositions and conditional propositions are algebra-
ically formulated in ways that are by now standard in the CEAPL liter-
ature. Next a representation theorem (due to I. R. Goodman) is proved
characterizing all binary operations on conditional propositions in terms
of 3-valued truth tables, and conversely. Boolean-like binary operations of
“and”, “or”, “not” and “if - then - ” are then defined on the conditional
propositions according to P.G. CALABRESE [4-6], and the four 3-valued
truth tables for these operations are exhibited. The third value of these 3-
valued truth tables captures the the notion of an “inapplicable” conditional
proposition, one whose condition is false, rather than a third truth-value
of “unknown” for propositions. The subsection “Fundamental Theorem of
Boolean Algebra Extended to Conditionals” begins with a definition of a
conditional Boolean function and continues with a new result, an extension
of the Fundamental Theorem of Boolcan Algebra to conditional proposi-
tions. The new theorem is then used to prove two corollaries, one of them
being Goodman’s representation theorem. Finally, a new four-valued logic
is suggested in order to capture both the “inapplicable” and “unknown”
truth states of conditional propositions.
!

2. Fundamentals of Conditional Probability Logic.

The formal development of CEAPL can be accomplished most simply
in terms of partially defined, measurable indicator (characteristic) functions
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on a sample space. This approach was early proposed by B. DE FINETTI
[9] and later utilized by G. ScHAY [29]. (Also see P. CALABRESE [4], p.
234 and especially [5], pp. 684-686, and [6], pp. 75-82.) Alternatively,
the development of CEAPL can be defined in terms of ordered pairs of
propositions; still another approach is via algebraic filters. (For the latter
developments, see P. CALABRESE [4], pp. 203-214 and I.R. Goodman et
al [13], pp. 25-46). First the connection between probabilistic events and
logical propositions will be briefly recounted.

Events and Propositions

Let P = (9, B, P) be a probability space of individual instances §2,
events (an algebra of subsets of instances) B, and probability measure P.
Then the characteristic function of cach measurable subset B,B € B is
a unique measurable indicator function ¢p : 2 — {0,1} from Q to the
2-element boolean algebra {0,1} defined as follows:

1, if weB,
1) qg(“’):{o, if weB

The function g (dropping the subscript) is a “proposition” in the sense
that for each w € , either ¢ is true for w, meaning ¢(w) = 1, or else ¢
is false for w, meaning ¢(w) = 0. L will denote the set of all propositions
of P. Conversely, each measurable indicator function ¢ defines a unique
measurable subset B, B € B by

(2) B=g¢"'(1)={we:qw) =1}

B is the measurable subset of cases (instances) for which q is true, and P(B)
is the probability measure of the partial truth of g.

In this correspondence between measurable subsets (i.e., probabilistic
events) and measurable indicator functions (i.e., propositions) the universe
of all possible cases §2 corresponds to the unity indicator function, to those
propositions that are true in all cases — necessary and provable. The empty
set ® corresponds to the zero indicator function, to those propositions that
are false in all cases — impossible and contradictory. Two propositions p
and ¢ are equivalent if and only if they are equal as functions.

Boolean Operations on Propositions. The boolean operations of union
(U), intersection (N) and complement (*) defined on the boolean algebra (or
sigma-algebra) B of events of P naturally induce boolean operations on the




Conditional event algebras and conditional probability logics 5 '

propositions of L: For arbitrary events A and B in B, or propositions pg4,
pp in L, define

Pa VNV PB = P(auB)
(3) DA NPB = PanB)
—(pa) =par .
This is equivalent to the equations
(v 9)(w) = pw) V ¢w)
(4) (P A @ (w) = p(w) A g(w)
—p(w) = ~(p(w))

where the operations of disjunction (V), conjunction (A or juxtaposition)
and negation (—) on the right hand side of equations (4) are in the 2-element
boolean algebra {0, 1}. £ will denote the boolean algebra of propositions L
as generated by the probability space P.

Conditional Events and Conditional Propositions

Consider now that each ordered pair, (B|A) of measurable subsets B, A
in B with corresponding indicator functions g, p, defines a unique domain-
restricted measurable indicator function (¢|p) : A — {0,1}, from A to the
2-element boolean algebra as follows:

1, if we(ANB),
(5) (glp)(w) =1 0, if we(AnB),
undefined, if we A’

This can be expressed in terms of the unconditioned propositions p and ¢
by

q(w), if plw)=1,

(6) (qlp)(w) = { _
/ undefined, if p(w)=0

(q|p) is a “conditional proposition” in the sense that if p is true for w then

either (g|p) is true for w or (¢|p) is falsc for w. But we say that (g|p) “does

not apply” (i.e., is undefined or inapplicable) for those w for which p is false.
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Thus (g|p) has three truth states. (g|p) is simply g, restricted to p~1(1), the
subset on which p is true. The set of all conditional propositions of P will
be denoted L/L. Conversely, each domain-restricted, measurable indicator
function (¢|p) defines a unique conditional event (B|A), where A and B
are measurable subsets determined by A = p~!(1) and B = ¢7(1). A is
the measurable subset on which p is true; B is the measurable subset on
which ¢ is true, and BN A is the measurable subset on which both ¢ and p
are true. For non-zero P(A), P(B|A) = P(Bn A)/P(A) is the conditional
probability of ¢ given p, which is denoted P(q|p).

Definition of Equivalence. Two conditional propositions (g|p) and (s|r)
are equivalent, i.e. (g|p) = (s|r), if and only if they are equal as indicator
functions, that is, if and only if they have the same domain and are equal
on this common domain. Note that it easily follows that two conditionals
(qlp) and (s|r) are equivalent if and only if they have equivalent premises
and their conclusions are equivalent in conjunction with that premise. That
is,

) (qlp) = (s|r) ifandonlyif (p=r) and (gp=sr).

Note that if (g|p) is an arbitrary conditional then (¢q|p) = (gp|p). A
conditional proposition (¢|p) is said to be in reduced form if ¢ = gp. It is
also easy to see that equivalent conditional propositions are assigned the
same conditional probability.

Operations on Conditionals and 3-Valued Logic

It is now time to specify boolean-like operations “and”, “or”, and “not”
on conditional propositions and also the operation of iterated (nested) con-
ditioning.
Representation Theorem for Operations on Conditional Proposi-
tions. In this regard, I.R. GooDMAN ([12] and [13], p. 81) has proved a
fundamental representation theorem for operations on conditional proposi-
tions. According to this theorem, all operations on conditionals that are
made up of boolean antecedents and consequents can be expressed as 3-
valued truth tables, and conversely. These truth tables are applied in indi-
vidual instances w (models) according to the correspondence

/

(alb) is “true” — a and b areboth truein w
(a]b) is “false” ~ a istrueand b isfalsein w

(alb) is “undefined” — b isfalsein w
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This theorem is an extension of the well-known theorem from Boolean al-
gebra that asserts that any Boolean function of propositions is completely
determined by its action on the two propositions 0 and 1. For instance any
binary operation (such as V or A) on Boolcan propositions is determined
by its action on the 0 and 1 propositions. But in the realm of conditionals,
every such function on conditional propositions is completely determined
by its action on the three conditional propositions (0]1), (1|1) and (0]0).
Conversely, every such function of conditionals generates such a 3-valued
truth table. For simplicity, restrict attention to binary operations, that is,
to 2-place functions.

Representation Theorem (Goodman). Let f be any 2-place function
f on conditionals of the form

(8) £((alb), (cld)) = (g(a,b, ¢, d)|h(a, b, c,d))

where g and h are Boolean propositions. Then f defines a 3-valued assign-
ment of the 3 conditional propositions (1/1), (0/1) and (0|0) to themselves.
Conversely, any such assignment defines such a 2-place function on condi-
tional propositions.

Proof. - Clearly, when a,b,c and d are in {0,1}, then g(a,b,¢c, d) and
h(a,b,c,d) are both in {0,1} and so (g(a,b,c,d)|h(a,b,c,d)) is (1]1), (0]1)
or (0]0) since (1|0) = (0]0). So every such 2-place function f on conditionals
defines a 3-valued assignment of the 3 conditionals (1]1), (0|1) and (0]0) to
themselves. Conversely, any such assignment can be used to define a unique
binary function on conditionals: Let (1]1) = 1,(0]1) = 0 and 010y =1
(for undefined or “inapplicable”), and let k be any binary function of the 3
values 1, 0 and I. Then k assigns to each pair of indicator functions (alb)
and (c|d) the indicator function k(alb) : w — k((alb)(w), (c|d)(w)), which
is measurable because k is a discrete function of the three values 1, 0, and
I, and so therefore measurable and because the composite of measurable
functions is measurable.

GOODMAN [13], pp. 103-6, has shown that the the three operations of
“and”, “or” and “not” (designated GNW) derived by himself, H.T. Nguyen
and E. A. Walker correspond to the 3-valued truth tables of J. Lukasiewicz,
whereas the the author’s operations (designated SAC) correspond to the 3-
valued truth tables of B. Sobocinski. (See N. RESCHER [27] for an account
of these 3-valued logics.)

Boolean-like Operations for Conditionals. Operations on L/L have
been defined and motivated in [4-8]. For arbitrary conditionals (¢q|p) and
(s|r) these operations are
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(9a) (qlp) V (s]r) = (gp V s)|(pV T)
(9b) (glp) A (s|r) = (gp—r V —psr V gpsr)|(p V )
(9¢c) ~(glp) = (—~gplp)

Briefly, the relative negation —(g|p) of (q|p) is just (—g|p), which is also
(—aplp), since (qlp) V (=glp) = (1|p) and (qlp) A (~qlp) = (0|p), and (1]p)
and (0|p) have conditional probabilities 1 and 0 respectively. These are the
reasons for equation (9¢). The disjunction (g|p) V (s|r) is applicable when
either p or 7 is true. It is applicable and also true when either both ¢ and
p are true or both s and r are true. Otherwise, (g|p) V (s|r) is applicable
and false. This motivates equation (9a). Similarly, (¢g|p) A (s|r) is applicable
when either p or r is true; it is false and applicable when ¢ is false and p
is true or when s is false and r is true. Otherwise it is true and applicable.
So (glp) A (s|r) is true and applicable on —(—~gpV —sr) = (¢V —p)(sV —-r) =
(gp—r V —psrV gpsr V —p-r) = qp—rV —psr V gpsr, since ~p—r = 01if (pVr)
is true, that is, if (g|p) A (s|r) is applicable. This motivates equation (9b).

With the operations of “or” (V), “and” (juxtaposition or A) and “not”
(=), the set L/L of conditional propositions (¢|p) includes an isomorphic
copy of the original boolean algebra of propositions according to the iden-
tification

(10) (pl1) = p

Furthermore, for any fixed non-zero proposition p, the set of conditionals
{(glp) : all g € L} forms a boolean algebra, which is denoted £/p. However
L/L together with these three operations does not form a boolean alge-
bra (although it has many boolean subalgebras). L/L forms a join lattice
with respect to V and a meet lattice with respect to A. Distributivity no
longer holds in general. 1 and 0 are no longer absolute units but (1[0) is
an absolute unit. Absolute negations do not generally exist and absorption
may not hold. (For an elaboration sec CALABRESE [4], pp. 226-227 and [6],
pp. 93-96 and [34] of Part II.)

/" The De Morgan formulas can also be proved for conditionals:

(11) —[(glp) V (s|r)] = ~(glp) A =~ (slr)
(12) —[(glp) A (s|)] = =(qlp) V = (s|r)
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The Conditional Closure

Although the conditioning opcrator is not a closed operation on propo-
sitions, it can be made a closed operation on conditional propositions. This
is reminiscent of how the fraction formed by two integers is not in gen-
eral equal to another integer but the fraction formed by two fractions is
again equal to a fraction. In general conditional conditionals are of the
form (g|p)|(s|r). The mixed forms ((qlp)|s) and (q|(s|r)) for propositions g,
p, s, and r can be expressed as the special cases (glp)|(s|1) and (g|1)|(s]r)
respectively.

Definition of Iterated Conditionals. Let (¢|p) and (s|r) be arbitrary
conditionals. Then define the iterated conditional proposition (q|p)|(sir) by

(13) (alp)|(slr) = (alp A (s]r))

This is a generalization of the so-called “import-export” principle that “if
¢ then (if b then a)” is equivalent to “if ¢ and b then a”. By equation (9b)
equation (13) conveniently reduces to

(14) (alp)|(slr) = gl (p(s vV =)

Applying this to the mixed form cases yields

(15a) ((glp)|s) = (alps)
(15b) (ql(slr)) = (gl(s v -r))

The last formula (15b) shows that as a condition, (s|r) is equivalent to
(sV —r). This is one place where the old identification of “if p then ¢” with
“either ¢ or else not p” finds an appropriate place in the new theory. For a
purely algebraic justification of equation (14) see [4], pp. 214-219 and [40]
of Part IL

The collection L/L of all conditional propositions under the four oper-
ations “or” (V), “and” (juxtaposition or A), “not” (- or’) and “given” (|)
forms a closed system which the author has termed the conditional closure
of the boolean logic £, formally denoted £/L.

False Versus Not True. A good way to view conditional conditionals is
by interpreting “c given d” as “c given that d is not false” as contrasted
from “c given that d is true”. In the boolcan case these two are equivalent.
But in the realm of conditionals, they arc no longer equivalent. Thus “a
given that (c|d) is true” is not the same as “a given that (c|d) is not false”

~7
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due to the third truth state of “inapplicable”. “(c|d) is not false” means
“(c|d) is true or inapplicable”. That is, in terms of the original propositions,
it means “either (c A d) is true or d is false”. That is, (a given (c|d) is not
false) = (alcV —d), which agrees with equation (14). In contrast, “a|(c|d) is
true” is equivalent to “a given (c A d) is true”, which is also equivalent to
“((alo)ld)”.

Truth Value Representation. As expressed in the proof of the Repre-
sentation Theorem, by considering all possible assignments of T' (true), F
(false), and I (inapplicable) to two initial conditional propositions (g|p) and
(s|r) and then applying the operations (9a), (9b), (9¢) and (14) for “or”,
“and”, “not” and “given” respectively, the following four 3-valued truth
tables for conditional propositions are easily generated:

AND OR GIVEN NOT
TFI TFI TFI

T TFT TTT TIT F
F FFF TFF FIF T
I TFI TFI III I

Note here that “not true” means “false or inapplicable”, that “not false”
means “true or inapplicable”, and that “true” and “false” are no longer
opposites.

Fundamental Theorem of Boolean Algebra Extended to Condi-
tionals

Inspired by Goodman’s Representation Theorem, the author was led to
investigate an extension of the Fundamental Theorem of Boolean algebra to
conditional propositions. Recall (sce, for instance, P. RoSENBLOOM [28],
p. 5) that a Boolean function of one variable is a function that can be
formed by starting with constant functions and the identity function and
applying to these the operations of conjunction (A), disjunction (V), and
negation (—). This definition can easily be extended to functions of any
finite number of variables. For Boolean functions f of one variable z the
fundamental theorem of Boolean algebra states that

(16) - f(z) = (fQ) Az) Vv (F(0) A'),

where z’ has been written for —z to condense notation. It is then a corollary
that any such Boolean function is completely determined by its action on




Conditional event algebras and conditional probability logics 11

the two propositions 1 and 0. For Boolean functions of two variables, this
becomes

(17) flz,y) = F(L,Dzy Vv f(1,0)zy" Vv f(0,1)z’y V f(0,0)z"y’
where juxtaposition has replaced A. The above functions are said to be

expressed in “disjunctive normal form”.

Definition of Conditional Boolean Functions. A conditional Boolean
function of one conditional variable (z|y) is a function f : L/L — L/L given
by

(18) f(=@ly) = (9(=,y)h(z,))

where g and h are Boolean functions of two Boolean propositional variables x
and y. Similarly, a conditional Boolean function of two conditional variables
is a function f given by

(19) f((=zly), (w]2)) = (9(z, v, w, 2)|h(z, ¥, w, 2))

where g and h are Boolean functions of four Boolean propositional variables.
f is a conditional Boolean function of n conditional variables if

(20) fxilys, T2lya, oo, Tulyn) = (w]2)

Where w = g(‘rla Y1, T2,Y2,y--- s Loy yn) and z = h(l‘l, Y1, T2,Y2y -+« s Ty yn)
are Boolean functions of 2n variables.

Fundamental Theorem of Boolean Algebra Extended to Condi-
tionals. If f is a conditional Boolean function of one variable then f can
be uniquely expressed by

(21) fzly) = (fAM)zy) v (f(0[1)]2"y) v (F(O[O)]y) -

This expression for f(z|y) will be called the disjunctive normal form.
LEMMA. - If a,b,c, and d are any four propositions then
/

(22) (@VB)l(cVd) = (ale) V (ald) V (Blc) v (8ld)

Proof of Lemma - (@ Vb)lcVvd) = (al(cVd)V (bcVd)
= (alo) v (ald) Vv (blc) v (b|d)
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This lemma can easily be extended to any two finite sets of propositions
{a; :1=1,2,..,n}and {b; : i =1,2,...,m}:

(23) (aIVaQV...Van)|(b1ngv...vbm)=\/(a,~|b]~)

4,3

Proof of Fundamental Theorem - Since f must be a well-defined func-

tion, and since (zly) = (zyly), it follows that f(zly) = flzyly) =
g(zy, y)|h(zy,y). Now, applying the fundamental theorem of Boolean alge-

bra to g yields

g(zy,y) =91, 1)(zy)yVg(1,0)(zy)y'vg(0, 1)(zy)'yVg(0,0)(zy)"y’
(24) =g(1,1)zyVg(1,0)(0)Vg(0,1)z"yVg(0,0)y
=g(1,1)zyVvg(0,1)z'yVg(0,0)y" .

Similarly, h(zy,v) = h(1,1)zy V h(0,1)z’y V h(0,0)y’. Therefore, using the
lemma

f(zly)=[9(1, 1)zyVg(0, 1)2"yVvg(0,0)y']|[A(1, 1)zyVh(0,1)2"yVh(0, 0)y]
=[g(1, )zy|h(1, Dzy]V([g(1, D)zy|h(0, L)z'y] V[g(1, 1)zy|R(0, 0)y']
V[g(0, 1)z'ylh(1, 1)zy]V[g(0, 1)z"y|A(0, 1)z"y] V[g(0, 1)z"y| h(0, 0)y’]
V[g(0,0)y'|A(1, 1)zy] V[g(0, 0)y'|h(0, 1)2"y] v [g(0, 0)y'| (0, 0)y/].

(25)

Now only one of the three conditionals with antecedent A(1,1)zy is non-
zero. The others are equivalent to [0[R(1, 1)zy] because both (z'y)(zy) =0
and (y')}(zy) = 0. Similarly for the conditionals with antecedents h(0, 1)z'y
and h(0,0)y’. Thus

flzly)=[g(1, Vaylh(1, ay]V]g(0,1)z"y|h (0, 1)z"y] V[g(0, 0)y'[~(0, 0)y']
=[g(1, 1)|h(1, 1)zy]V[g(0, 1)|R(0, 1)z"y]V [9(0, 0)| (0, 0)y/]
=[(g(1, 1)|h(1, 1))|zy] V[(g(0, 1)|R(0, 1))|z"y] V[(g(0, 0)|h(0, 0))]v/]
=[f(1D)]zy]V[f(0]1)|z"y]V [£(0]0)]y] .

To show uniqueness, suppose f and j are two conditional Boolean functions
of (z|y). Then f and j can be expressed by

(26)

fzly)=[9(1,1)zyVvg(0,1)z'yVg(0,0)y'I[~(1, 1)zyVA(0,1)z"y Vh(0, 0)y']
J(zly)=[k(1, D)zyVE(0, 1)z"yVE(0, 0)y]|[m(1, )zyvm(0, 1)z'y vm(0, 0)y']
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where g, h, k and m are Boolean functions. Now if the right-hand sides of the
above equations are equal, then by the definition of equivalent conditionals,

(27) h(1,DzyV h(0,1)z'y V h(0,0)y" = [m(1, 1)zy Vm(0, 1)z"y Vm(0, 0)y']

and
g(1,1)h(1, D)zy V g(0,1)(0,1)z"y V g(0,0)h(0, 0)y’

(28) = k(1,1)m(1, Dzy V k(0,1)m(0, 1)z'y V k(0, 0)m(0, 0)y’

Clearly, from the first equation h(1,1) = m(1,1),h(0,1) = m(0,1), and
h(0,0) = m(0,0). Therefore the second equation becomes
9(1,1)h(1,1)zy v g(0,1)h(0, 1)z"y V g(0, 0)A(0, 0)y/

(29) = k(1, DA(L, Dzy V k(0,1)h(0,1)z'y V k(0,0)h(0,0)y’.

Furthermore, using the uniqueness for the Boolean case of the Fundamental
Theorem or directly,

9(1,1)h(1,1) = k(1,1)h(1,1)
(30) g(0,1)h(0,1) = k(0,1)h(0, 1)
g(0,0)h(0,0) = k(0,0)h(0,0).
Therefore, [g(1,1)|h(1,1)] = [k(1,1)|m(1,1)], and so f(1]1) = j(1|1). Simi-
larly, £(0|1) = j(0|1) and f(0]0) = 5(0|0). Therefore
fzly) = (fFAIL)|zy) v (F0I1)|z"y) V (£(010)]y")
= ((AD)lzy) v GOD)Iz"y) v GOI0)Y) = 5(zly) -

This completes the proof of the Fundamental Theorem.

(31)

The extension to conditional Boolean functions of two or more vari-
ables is straightforward but messy to write. For a function f of two con-
ditional variables there are nine disjoined terms. Writing f((z|y), (w|2)) as
f(z|y, w|2) to reduce parentheses the result is

fzly, wl2) = [f(11, 1{1)|zywz] V [f(1]1,0[1)|zyw’z] V [f(1[1,0]0)|zyz"]
(32) V [£(0]1,1]1)]z"ywz] V [f(0]1,0[1)|z"yw'2] V [f(0]1, 0]0)|2yz]
V[£(0]0, 1{1)[y"w2] V [£(0]0, 0]1){y"w’2] v [£(0]0, 0]0)|y'z].
It is now possible to prove Goodman’s representation theorem as a corollary

to this extended fundamental theorem, where again for simplicity, consider
conditional Boolean functions of just one variable.
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CoROLLARY 1 (Goodman). — A conditional Boolean function f of one
variable induces a unique 3-valued, 2-place truth table on L/L. Conversely,
each such 3-valued, 2-place truth table induces a unique conditional Boolean
function of one variable.

CoROLLARY 2 (Goodman). —  There are 3% different conditional
Boolean functions of one variable; there are 3°" different conditional Boolean
functions of n variables.

Proof of Corollary 1 - Given a conditional Boolean function f
of one variable define the truth table function t by t(z|y) = f(z|y) for
(zly) € {(1]1),(0]1),(0|0)}. Conversely, if t(z|y) is a 3-valued truth table
function with domain values (1|1), (0]1), or (0]0), then define the conditional
Boolean function f by:

(33) flzly) = E(1L)]zy] v [E(0]1)|z"y] V [t(0]0)]y']

By the uniqueness part of the fundamental theorem, different truth table
functions ¢ induce different conditional Boolean functions f.

Proof of Corollary 2 - By the fundamental theorem, f can be uniquely
expressed in disjunctive normal form and so there are three possible assign-
ments to each of the three domain elements {(1/1), (0]1), (0]0)}. Thus there
are 3* different possible assignments and that number of possible condi-
tional Boolean functions of one variable. For conditional Boolean functions
of two variables there are 3? different domain elements each of which can
be assigned any one of 3 different values. So there are 33° different possible
assignments and that number of different conditional Boolean functions of
two variables. The generalization to n values is straightforward.

Four-Valued Logic and More

It is interesting to note that in their excecllent comparison of alternate
operations on conditionals, DuBoIs and PRADE ([10], pp. 30-35; [11], pp.
126-131) several times describe (a|b) when b is false as “inapplicable”, al-
though they also adopt the interpretation of the truth status in this sit-
uation as being “any truth value in {0,1}.” But it seems to this author
that an “inapplicable” conditional should be neither true nor false, neither
0 nor 1. The truth state described by “either true or false” seems more
properly to correspond to the situation when “b0” or “a” (or both) remain
unknown. In this regard, it seems that the GNW-Lukasiewicz operations
are more appropriate for modeling “unknown” than for modeling “inappli-
cable” whereas the SAC (Schay-Adams-Calabrese) trio of operations seems
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to be more appropriate for modeling “inapplicable” than “unknown”. The
“unknown” truth state of the GNW-Lukasiewicz system seems well-designed
for unconditional classical propositions but the “inapplicable” truth state of
the SAC-Sobocinski system is designed for conditional propositions. With
these interpretations, (a|b) should perhaps have four possible truth values
or “states” in a more complete formulation of conditional information:

(a|b) is true (both a and b are true)

(alb) is false (b is true and a is false)

(a|b) is inapplicable (b is false)

(alb) is unknown (b is unknown or b is not false & a is unknown)

(Furthermore, it seems clear that in practice one needs to further qual-
ify these four truth states by saying “presently” before each of the above
possibilities because it is essential to be able to update information with ad-
ditional or even contrary information. Thus, in practice, these four states
should also be indexed by time.)

The fact that all binary operations on conditionals that are made up
of Boolean antecedents and consequents can be expressed as 3-valued truth
tables, and conversely, suggests that any operation on conditionals is appro-
priately expressed as a 3-valued truth table. However, if both “inapplicable”
and “unknown” are to be included in a combined logic then there must be
interactions between these two truth states not captured by 3-valued indi-
cator functions. This suggests the following four 4-valued truth tables:

AND OR GIVEN NOT
TFIU TFIU TFIU

TFTU TTTT TITU
FFFF TFFU FIFU
TFIU TFIU II1IU
U UFUU TUUU UIUU U

Note here that the truth value I retains its neutrality: IAp = I and IVp = p,
for p having any truth value in {T, F,I,U}. Similarly, the truth value U
still has that U A p = U unless p is false, and U V p = U unless p is true.
The above tables suggest that four-valued indicator functions of some
sort may be appropriate for modeling conditional propositions that are sub-
ject to being inapplicable as well as possibly having an “unknown” truth

~ N
~ N

e
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state. For example, in the first experiment of rolling a die, the conditions
“less than 4” and “not less than 4” may sometimes remain unknown after
the experiment. This is realistic in practical applications because sometimes
expected information is missing. Four-valued indicator functions could be
measurable, real set-valued functions partially defined on the sample space (2
and having truth values of {1} (true), {0} (false), ® (inapplicable-undefined)
or {0,1} (unknown, i.e., both 0 and 1). How these four truth values might
be expressed algebraically in terms of operations is an unexplored question.
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Part 11

Basic formulations and a
product space approach to conditional events

I.R. Goodman

0. Generalities and Motivations.

Conditional event algebra was developed in response to the actual need
- whether perceived or not by the present probability and AI communities -
to have an algebraic basis to represent ( partial or fully) causal or conditional
expressions, in an uncertainty context, which are compatible in a natural
way with conditional probabilities. The work initially focused on the repre-
sentation of such conditional events as one of three demonstrated equivalent
forms: intervals of events (and therefore treatable via interval algebra); prin-
cipal ideal cosets, extending the usual boolean quotient or residue algebras
to include the case of non-identical generators or antecedents; three-valued
indicator functions (and therefore connections with three- valued logics),
extending the usual two-valued ones.

Although many desirable propertiecs were derived for these entities,
based upon the development of a particular choice of operators, utilizing
functional image extensions of the corresponding classical boolean ones to
interval (or coset) form (see references in text below), a growing number of
conceptual difficulties has arisen with this approach and those proposed by
others. These include: the issues of higher order, or nested, conditioning,
conditioning of random variables and relations to conditional events, and
connections with classical statistical independence properties and statisti-
cal estimation and decision theory, in general. As a consequence of this,
another avenue to conditioning has been opened up, based upon a count-
ably infinite product space construction. Although this has led to a more
complicated computational structure for determining logical combinations
of conditionals and their associated probability evaluations, nevertheless
it has also yielded much more satisfactory theoretical foundations for the
representation of conditioning.

Many open issues within the new product space approach remain, in-
cluding: the total imbedding of the originally proposed conditional event
operations for the interval approach into the product space setting; the de-
termination of the boolean subalgebra gencrated by the action of all finite
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logical operations upon the base conditional events; the full characteriza-
tion of the various types of product space- derived deduction - this problem
turn out to be most efficiently represented in powerdomain terms; the de-
termination of the underlying logic of the product space operations - no
longer a simple truth-functional three-valued logic , as in the case of the
interval of events approach; application of the new approach to modeling of
linguistic information, both indicative and modal, and a cohesive approach
to combining of evidence. Promising directions toward solutions to some of
these problems may well lie in extending the rclated work of the logicians
Bas Van Fraasen and Van McGee.

This work attempts to determine a unified and computationally feasible
theory of causal or implicative forms, compatible with all corresponding
conditional probability evaluations, which can be of use in deriving a more
mathematically universal view of data fusion and related problems. In this
situation, both stochastic and linguistic- based evidence may be present.
Two basic motivating examples for carrying out such a scheme are as follows:

a) Partial Modus Ponens Use in Expert Systems, When Validity
of Inference Rules is Measured by Corresponding Conditional
Probabilities

In expert (or rule-based, or, intelligent) systems, the dominating feature
is a collection of relevant inference rules of the form “if b, then a”, “if d then
c¢”, “if b, then e”, etc, When (in effect, by suppressing or incorporating any
antecedental mformation) unconditional data is observed, say b, then all
such rules matching b in their antecedents, by modus ponens, fire their con-
sequents via conjunctions as ab = (if b, then a) -a,eb = (if b, then e) -b, etc.,
which in turn immediately yield the deducts a, e, etc. In turn, these various
outputs a, e, ... fire similarly the conscquents of all inference rules present
which have correspondingly individually a, e, ... as their antccedents, etc.
However, in the real world, such perfect matches need not hold and com-
mon sense states that each “close” match should produce “close” changes
in the consequents. But how much should these be and what mathemati-
cal guidelines can we appeal to? Of course, one could try to build in the
antecedents and consequents such nuances and changes and still employ tra-
ditional modus ponens to fire the rules. But the possibility of establishing
a theory of conditionals would allow for the replacement of modus ponens
by some nontrivial computation for the conjunctions (if b, then a) -(b,),
(if d, then c) -(c1), etc., where b; is not = b,¢, is not = ¢, ..., in general,
but are prescreened for proximity to the corresponding antecedents. This
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can be done, e.g., by use of the natural pseudometric induced by any given
probability measure P, dist(P)(b, (b)) = P((b - (b1)) V ({b1) — b)), based
on the latter being below a given threshold of probability. In turn, with
the development of a suitable algebra of conditionals or “conditional event
algebra”, one could obtain in a normal boolean or related way computable
appropriately determined events (or products of events, etc) A and B, de-
pendent upon (in the first case) a, b, b1, but not dependent upon any specific
probability measure to be applied. This is analogous to the use of ordinary
boolean algebra in representing and logically manipulating events prior to
any probability evaluation - leading to validity level P(A|B), etc. In the
above, note that the antecedents b of inference rules “if b, then a” are gener-
ally nontrivial, while those of the data or unconditional events b; are tacitly
understood to be the universal event L, unless an explicit specified prior is
acknowledged.

Thus, in general here we are considering the logical combination of
conditionals with nonmatching antecedents.

b) Use of Conditionals in Databases

A second generic potential application of conditional event algebra is
simply the representing and logical combining of potential or partial causal
relations arising in databases. For example, one may wish to determine
first the validity of two possible pairs of database descriptions, where each
description consists of those population clements satisfying a particular set
of characteristics. The underlying population may be the sct of humans in
a particular city over 21 years of age who have been surveyed rclative to a
number of characteristics - with not all individuals necessarily responding
and those responding being possibly in error according to some probability
distribution. The characteristics may typically include age, height, scaled
health level, hair color, etc. Then, in this case, events a, b,c,d could be: a
corresponds to over 30 yrs, but under 47 and having blond or brown hair,
b corresponds to over 25, having blond or white hair and at health level 5
(on a scale from 1 to 10), with c and d similarly defined. Thus the causality
level between b and a and between d and ¢ are naturally measured by the
corresponding conditional probabilities P(alb), P(c|d), respectively. In turn,
the/ conjunction of the causality relations - or in a related vein, the jointness
of the causality-relations - (if b, then a) and (if d, then c) - may be sought,
i.e., P ((if b, then a) - (if d, then c)), where the evaluations hold:

P(if b, then a) = P(alb), P(if d, then ¢) = P(c|d).
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Again, as in example a), we are in general considering the logical combi-
nation of conditionals with non-identical antecedents . (When antecedents
are identical, or information is completely separate or independent, stan-
dard probability techniques are available, as usual.) Extensions of both
inner and outer concatenations and other database operations also appear
feasible to carry out within this context.

For additional applications of conditional event algebra to both mil-
itary and non- military uses, including bayesian updating of conditional
information and conditional belief construction, see [36]. For yet further
motivations, for the introducing of conditional event algebra, see [27]. Pre-
liminary applications of conditional event algebra to default logic and to a
wide variety of related problems, including the “penguin triangle” , Simp-
son’s paradox (see especially [4]) and“Poole’s paradox ” are encouraging
[28].

1. The Basic Problem.

Extensive literature search has revealed that at present there is a discon-
nect between the use of traditional logical methods in treating causal, con-
ditional, or “if- then”, information and traditional probabilistic/stochastic
approaches to the same information. This issue’s origin appears to begin
with the original rejection of Boole’s proposed full analogues for set/event
operations via corresponding elementary arithmetic operations by some of
the leading scientists of that period [15]. The omission of an analogue to
division to represent conditioning in probability continues into the present,
with only a handful of researchers ever considering this long- overlooked
problem. That this division of events cannot be represented by simple means
was indeed pointed out by CALABRESE [1] and earlier, independently, by
PoPPER [37], both showing the basic inconsistency between what is taken
as the standard classical logical interpretation for implication - the material
conditional , which in boolean form for “if b, then a” becomes &' Va(= b'Vab)
and conditional probability:

PV Va) = 1 — P(ab) + P(t') = P(alb) + (P(¥) - P(|b)) > P(alb),

An general, except for trivial boundary cases when only equality hold. Cal-
abrese went further and showed that in fact no binary boolean operation
could play the role of the argument within conditional probability [2]. But,
Lewis, independent of Calabrese and Popper, showed an even more far-
reaching result, as detailed below. (See [14], Chapters 0 and 1 for a detailed
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history of the problem, where the works of de Finetti, Popper, Reichenbach,
Mazurkiewicz, Domotor, Copeland, Hailperin, Schay, Adams, and other pi-
oneers in the field are surveyed, as well as the more recent work of Calabrese,
Goodman & Nguyen, Dubois & Prade, Scozzafava, and others.)

Lewis’ triviality result [33] has added “fuel to the fire”, in that it is seen
that it is impossible, in general, to obtain a binary operation g : B x B to
B, for B boolean such that for any probability measure P over B and all
a,bin B, with P(b) > 0,

P(g(a,b)) = P(alb).

This has sparked a large number of responses from the logical community
to overrcact to this constraint by abandoning the search for such possible
expressions or conditional events g(a,b) - which we will write from now on
as (alb) - satisfying the above equation. (See, e.g., the various papers in the
edited works in [31,32].) However, the above does not preclude the search
for such entities outside of B itseclf (as opposed to the earlier futile work
of Copeland and others unaware of Lewis’ result - having preceded Lewis’
1976 paper by twenty years and more - see {5,0]).

2. Rigorous Formulation of the Basic Problem.

Basic Mathematical Problem: Given any measurable space (L, B) (B

a boolean or sigma algebra with L as its universal element), find another

space C having an algebraic structure with operations upon it extending

" those over B - and labeled for convenience as formally the same - and a

binary mapping (-] --) : B x B — C, such that using the notation (alb) for
(-] -*)(a, b), for any a,b in B the following conditions hold:

Q1) (a|L) can be identified with a, for all @ in B, so that (:|[L) : B — C' is
an imbedding.

Q2) (al|b) = (ab|b), all a,b in B, dependency of the conditional through only
the antecedent and its conjunction with the consequent.

Q3) For any probability measure P over B, there is a function F; : C — unit
interval [0, 1], such that Py((a|b)) = P(a|b)(= P(ab)/P(b)), all a,bin B,
P(b) > 0 - the Stalnaker Thesis (due, in part, to this named individual
proposing the above relation which Lewis “destroyed” [39]).

In the above, call any (a|b) “the conditional event with antecedent b and
consequent a”, or simply “if b, then (possibly) a” or “(possibly) a, given b”,
or even “b (partially) causes a”.
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Additional Natural Properties Conditional Events Should Pos-
sess.

In addition to the three fundamental properties Q1) - Q3) required

above, it appears reasonable to also require the following nine additional
constraints for conditional events to satisfy:

Q4)

Q5)

Q6)

Q7)

Q8)

(alt) - (¢lb) = (aclb), (alb) V (clt) = (a v clb), (alb) = (@|b), all a,b,c in
B, standard fixed antecedent homomorphism/ coset-like properties.
(alb) - b = ab, modus ponens, and more generally, the chaining relation
holds (ac|b) = (alc) - (c|b), for all a,b,c in B.

P(a)b) = 0, for all probability measures P over B , iff ab =0 : all a,b
in B, for P(b) > 0; P(a|b) = 1, for all probability measures P over
B,iff ab=10biff b < a; all a,b in B, P(b) >0, zero-unity consistency
properties.

P(a|b) = P(c|d), for all probability measures P over B, P(b), P(d) > 0,
iff (a|b) = (c|d); all a,b,c,d in B, the identity consistency with proba-
bility.

P(alb) < P(c|d), for all probability measures P over B, P(b), P(d) > 0,
iff (alb) < (c|d), for any a,b,c,d in B.

The last relation < is defined over the conditional events generated from

B by any of the equivalent standard ways a lattice order is determined, if
a lattice structure holds; otherwise, some sort of semi-lattice compatibility
is required through either - or V. This property is a conditional probability
order consistency one.

Q7)
Q8’)
Q9)

Note that from [14], sect. 2.2, Q7) and Q8) reduce to:

(a]b) = (¢]d) iff ab = cd and b = d, provided neither conditional is a
zero or unity type.

(alb) < (c|d) iff ab < ¢d and ¢'d < a'b, provided neither conditional is a
zero or unity type.

If P is any given probability measure over B and a,b,c,d in B are
arbitrary such that pairwise (ab, b) and (cd, d) are P-independent, then,
provided P(b), P(d) > 0,

Fo((alb) - (c|d)) = P(alb) - P(c|d).

If bd = ()‘, i.e. b and d are disjoint, then the above equation should hold

for all probability measures P over B simultaneously, a strong P-indepen-
dence consistency property.




Q10)

Q11)
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For any measurable space (L, B), any positive integer k, denoting the
real k-dimensional Borel field over k-dimensional euclidean space RF as
B*, suppose (-|+-) : Bx B — C and (:| ) : B¥ x B¥ — D* are solutions
to the Basic Problem [using for convenience the same conditional event
notation, when there is no ambiguity] which yield either boolean or
sigma-algebra structures for C and D*. Then, for any two rv (random
variables) Y : (L,B) — (R™,B™) and Z : (L, B) — (R", B™), there is
arv W: (L|L),C) — ((Rm+M|Rim+M), D(m+m)) guch that W induces
all conditional probabilities simultaneously, i.e., W=(a x b|R™ X b) =
(Y=Y(a)|Z71(b)), for all @ in B™ and all b in B™. Hence, for all proba-
bility measures P over B, P,(W~!(a X b|R™ x b)) = P(Y~"Y(a)|Z71(})).
The results in Q10) are extendable in a natural way to any finite
collection of rv's Y; : (L,B) — (R",B!"), Z; : (L,B) — (R}, B?}),
such that, assuming cartesian products are extendable to conditional
events, for all a; in B® and b; in B}, ¢ = 1,...,r, for any pos-
itive integer r, W™ (a; x b|Ry* X by) X ... x (a, X b.|R™ x b,)] =
(Y7 Ya)|Z7 (b)) ... (Y7 (a,)| Z71 (b)) (conjunction), whence, for any
probability measure P over B,

Po[WH(ay x by |RY* x b)) x ... x (@, X b|JR™ x (b,)]] =
= Po[(Y7 ((a)] 271 (b)) - - (V.7 (@)l 277 (0))]

probabilities through the hypothesis of the algebraic structure of C-here
being at least boolean.

The above properties expressed by Q10) and Q11) can be considered

as explicit necessary conditions for extendibility of standard decision theory
to a decision theory based upon conditionals. Finally, it should be noted
that the change of domain from that of (L, B) for the initial rv ¥ and Z to
that for W is necessary, since it can be shown (see [22], sect. 3.2) that any
solution W to Q10) necessary cannot have as its domain the original space
(L, B). If such W satisfying Q10) and Q11) exist, it is natural to identify
them as “conditional” rv (Y|Z) over their appropriate domains.

Q12)

/

Conditional event mapping (| --) can be extended in a well-defined way

to (+|-): (range of (-|~) over B x B)x (range of (-|-) over B x B) so that,

using and reusing the Py notation as above, for any probability measure

P over b, Py and Py, are well-defined probability measures over their

respective domains, so that for all a,b,¢,d in B, provided P(cd) > 0,

(1) Poo((alb)|(cld)) = Po((alb) - (c|d))/P(c|d), noting the natural reduc-
tion when b = d, that Pyo((alb)|(c[b)) = P(albc);
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(i) A weighted form of the well-known classical logic material condi-
tional property of “import-export” holds as:

Poo((alb)lc) = w - P(albc) + (1 — w) - P(ab),

where w in [0, 1] is some weight dependent in general on P(ab), P(b),
P(abc), P(be), P(c), etc.

4. Data Fusion, C3, and Decision-making Using Conditionals.

A basic thrust of the present research is to address the above problem
through the development of a comprehensive, mathematically sound, and
computationally feasible, way to qualify and quantify conditional or causal
relations, compatible with all conditional probability evaluations under the
basic assumption - now generally refered to as the Stalnaker Thesis [39] -
that the above equation can be satisfied by some appropriate constructible
choice of entities outside of the original boolean algebra of events.

This development is expected to lead to an intrinsic conditional event-
forming extension of the current standard approach to rational decision-
making. The latter, at present, utilizes the concept of a (joint) sigma al-
gebra of -in effect- unconditional events as its basis for all observed data,
all parameter vectors of interest, as well as for all actions or decisions, with
the requisite conditional relations among these variables expressible only
in numerical form, not syntactically, as the proposed extension would do.
This is part of a more long-range view of deriving a unified approach to
the combining of disparate information, relative to the overall data fusion
and C3 (command, control, communications ) problem. (See [11, 12, 23,
13, 18, 19], [24], sect V, for specific applications to these problems). Some
of this work entails extending conditioning to a fuzzy set framework [3, 20},
utilizing this author and Prof. H.T. Nguyen’s techniques of representing
fuzzy sets via nested random sets [17]. Such information can be expected to
be in either of the following possibly overlapping categories, arriving from
many differing sources: unconditional or conditional; linguistic-narrative
or stochastic-random; and indicative-declarative or modal/temporal in the
extended sense, including not only possibility or necessity, but also mani-
festing the opinion of an agent, such as belief, knowledge, emotion, among
other possible illocutionary factors. Finally, note, apropos to the comments
at the end of Q11), in addition to the preservation of logical operations
on conditionals by such conditional rv, it is just as important to be able
to extend also the highly non-boolean ordinary arithmetic operations to
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conditional form. In a similar direction, possible tie-ins with conditional
qualitative probability structures (as shown in the case of GNW for the
interval of events approach, as mentioned previously) must also be perused
for full solutions to the Basic Problem.

5. Interval of Events/Boolean-like Operator Approach to Condi-
tioning.

In the evolving of a theory of conditional forms, as indicated above,
two basic philosophies of approach have naturally arisen: 1) the interval
of events/boolean-like operator approach - and its mathematical equivalent
forms, including the principal ideal coset, ordered pairs under a natural
equivalence, and three-valued set indicator function forms; and 2) the prod-
uct space approach. The first approach is historically the older, with a
number of individuals sharing at least this assumed form for conditional
events (a|b) representing “if b, then a”, though differing on the particu-
lar boolean-like algebra to be assigned. In brief, it can be shown that for
properties Q1), Q2), Q3), and for Q6), Q7) somewhat strengthened, so
that, for all a,b,c,d in boolean algebra B, (a|b) = (c|d) implies b = d and
(alb) = (c|b) implies ab = cb, then the following equivalent forms must hold
up to a global isomorphism (see e.g. [14], Chapt. 12 et passim):

(alb)=[ab,b’'Vab]={zin B:ab<z <VVab}=B-b'Vab={yb'Vab : y in B}

where the first form is called the interval of events form and the second,
the principal ideal coset form - the latter, since each (a|b) is in principal
ideal boolean quotient algebra B/B -V'. The above is also equivalent to the
three-valued logic form - using the standard Stone Representation -

d(a|b){(z)=1, ifz inab; d(ab)(z)=0, ifzina'b; d(alb)(z)=wu, ifzin b’

where u is a third value (indeterminate) between 0 and 1. (See [14], sect.1.3.)

We call an operator F' among conditional events (a;|b;) boolean-like, if
there are actually ordinary boolean operators f = f(a;,b;,7 = 1,...,n),
g = g(a;,b;,i = 1,...,n) such that F((a;|b;), i = 1,...,n) = (flg). In
the case of the latter, two pre-eminent boolean-like, or extended, boolean
algebras have been proposed to be defined among conditional events of the
interval or coset form: GNW (Goodman-Nguyen-Walker) and SAC (Schay-
Adams-Calabrese), each having certain advantages and disadvantages., (See
[14], sect. 3.5, [2], [24], sects. 1,B1-3 for explicit formulas for these algebras.)
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For example, GNW: is derivable as the natural functional image exten-
sion of the ordinary unconditional boolean operations; produces that unique
(distributive and deMorgan) lattice order among conditional events which
is fully compatible with the numerical ordering of all conditional probabili-
ties; is that unique Stone algebra among all possible boolean-like conditional
event algebras; has a full Stone representation, extending the standard un-
conditional relations; is related directly to a conditional qualitative proba-
bility structure; has a relatively simple normal form expansion, extending
the usual boolean canonical expansion; yields essentially the underlying al-
gebraic structure for the newly-emerging concept of “rough sets”;and, via
the three-valued indicator functional, is isomorphic to Lukasiewicz’ very
well- investigated and justified three-valued logic. (See [26], (14], [22], [24],
[21), (28], [9].)

On the other hand, SAC disjunction can be related to interval algebra
intersection ([24], sect IB3) and all of SAC is isomorphic (via also the three-
valued indicator functional) to Sobocinski’s three-valued logic ([14], sect.
3.5), which is an alternative natural choice for uses in combining unde-
fined quantities with others. (Again, see [2] for further properties of SAC.)
Both the last result and the characterization of GNW are special cases of a
far-reaching theorem connecting isomorphically all choices of three-valued
truth-functional logics with all choices of boolean-like algebras over con-
ditionals represented as intervals of events ([14], sect. 3.4; [25], sect. D,
Theorem 6). In addition, it has been recently pointed out that SAC dis-
junction and conjunction are natural weighted averaging operators and can
play an important role in modeling of disjoint-like information (see [21],
sect. 3).

6. Deficiencies of the Interval of Events Approach.

Despite the above positive results, GNW, SAC, and all other boolean-
like algebras relative to intervals of events as conditionals, fail to satisfy
a number of key criteria necessary to the development of a fully satisfac-
tory theory of conditional decisions. These include: 1) inability to have
a full boolean structure (GNW being the strongest, having a deMorgan
,Stone algebra form, while SAC is a deMorgan non-distributive non-full

lattice, though it is a separate semi-lattice with respect to conjunction
and disjunction); 2) lack of a sound definition for nested or higher or-
der conditionals, with the consistency relation satisfied (P((a|b)|(c|d)) =
P((alb) - (c|d))/P(c|d)) - though NGUYEN [35] and GEHRKE and WALKER
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[8], among others, have developed higher order conditional events within
a Stone algebra setting, at the expense of the above identity; 3) lack of
a basis for developing random conditional events and conditional random
variables, so that it would be meaningful to have a decision theory based
upon conditionals, and in particular, the relation ((Y|Z) —1)(a x b)|R x b) =
(Y — 1)(a)|(Z — 1)(b)), for any rv Y and Z and real Borel events a,b;
and 4) not being reducible to the usual probability independence relations,
i.e., we need to have P((alb) - (c|d)) = P(alb) - P(c|d), when ab,b and cd,d
are pairwise P-independent. (See [24], sect.Il; [21], sect. 5 for additional
details.)

In summary, both GNW and SAC satisfy properties Q1) - Q7), with
only GNW satisfying Q8), and despite some elaborate constructions (again,
see [14], sects. 5.3, 8.1), neither conditional event algebra satisfies any of
Q9) - Q12). This is, basically, because the range space of conditionals, under
the interval of events approach using boolean-like operations is always non-
boolean. On the other hand, the interval of events approach to conditioning
has brought forth much renewed interest in the subject, as can be seen by the
publication of the monograph [16], where thirteen researchers contributed
new material, and by the convening of the First CEAPL (Conditional Event
Algebra and Conditional Probability Logic) Workshop, March 13- 14, 1992,
at NRaD, San Diego, where over twenty researchers attended.

7. Product Space Approach to Conditionals.

The product space approach has been developed to address the above
problems of the interval of events approach. First, via a suggestion of
D.Bamber, NRaD (personal communication), conditional probabilities were
seen to satisfy always the identity

Plal) = 3 P@) (PO

which, in turn, has the obvious product space interpretation through two-
stage coin tossing: P(a|b) = probability of eventually obtaining successfully
an a from the first coin, where failure means the occurrence of @/, following a
successful b occurrence from the second coin, where failure - the occurrence
of é’ - does not permit a toss of the first coin. This led to the formulation
that any conditional event could be alternatively expressed as the infinite
disjoint disjunction of cylinder events:

(alb) =abx LxLx...VV xabx LxLx..VV xV xabxLxLx...V....
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Here, L is the universal element of the boolean algebra containing a,b,c
,d, ..., and where, if P, is the usual countably infinite factor product prob-
ability measure formed from P as its common marginal factor probability.
Then, as a check, it is easily seen that , for P(b) > 0, Py((alb)) = P(alb).

All of the above can be put in the context of first forming from a
given probability space (L, B, P) the countably infinite product space with
identical marginal components. Since one can easily obtain the recursive
relation

(alb) = abV (¥ x (alb))

from the first equation, all desired logical combinations of these condition-
als can likewise be recursively obtained, yielding more complex, but fully
computable counterparts to GNW and SAC, determined uniquely from the
product space structure, not by any other criteria. For example, one can
show using this technique

(a|b) - (c|d) = ((abed V abd’ x (c|d) V (cdb’ x (a|b))|bV d),

where we extend the definition of a conditional event (a|b) in Lo, as in the
first equation, to say (Q|b) also in Lo, by formal replacement of consequent
ab by Q. Also, a number of explicit formulas and relations involving the
product space approach have been obtained, Most importantly, the product
space approach answers in the affirmative all of the deficiencies produced by
the interval of events approach, i.e., properties Q1) - Q12) are all satisfied!
(See [27];[22], sect. 3; [24], sect. IV; [21], sects. 6, 7.)

8. Further Properties of the Product Space Approach.

In place of the common GNW and SAC “import-export” property of
nested conditionals,

Fo((alb)lc) = P(albe),

for all a,b,c in B with P(bc) > 0, the product space approach yields rather
the weighted form .

Po((alb)|c) = P(blc) - P(albc) + P(¥'|c) - P(alb),
7
among other desirable properties. In fact it has just been shown that
any reasonable model for conditional events cannot satisfy both traditional
import-export as well as have consistent nested conditionals (in the sense de-
scribed above). (See [29].) It is also important to point out that the product
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space produces essentially the same algebraic properties that McGee has ob-
tained via his rational betting/coherency approach to conditioning (though
McGee never obtained explicit forms for the conditionals themselves). (See
[34].) Even more significantly, Bas Van Fraasen’s “Stalnaker Bernoulli mod-
els” independently proposed in 1976 and bucking the David Lewis triviality
scare in logic (as discussed in a previous section here) [40], coincide with
the product space approach. But, apparently, Van Fraasen has not gone
on to develop these ideas much further, although he has defined a concept
of conditioning, extending that of this author which yields closure relative
to the entire product space By, derived from the initial boolean algebra of
unconditional events B. It should be noted that a recent characterization
has been discovered which shows that essentially the only conditional event
algebra which has the strong independence property

Pye-Vd - (alb) - (cld)---) = P(eb'd'---) - Po((alb) - (cld) - ),

for all probability measures P over B and all a,b,¢,d,e,... in B, must be
the product space approach ([22], theorem 18). (See [25], sect. H, for other
characterizations of the product space approach.)

In summary, while the product space approach obviously introduces
more complex computations than the interval of events approach as ,e.g.,
through SAC and GNW algebras, it is theoretically more sound. Hence a
basic tradeoff exists between the use of the two schools of approach ([24],
sect. IVD). (For further tie-ins between the two approaches, where in fact
GNW and SAC, except for zero- and unity type conditional events, are seen
to be imbeddable in the product space setting, see [25], sect. I.)

9. Deduction, Powerdomain Relations, and General Issues.

A major issue arising naturally from the modeling of inference rules, or
more generally, conditionals is that of the associated partial or lattice (or
even pre-) order generated by the choice of algebra used in their represen-
tation. This type of order is naturally interpreted as the basic deducing
or causality relation among the inference rules or conditionals. It has al-
reatly been seen that among all reasonable entities that we could call con-
ditionals compatible with conditional probabilities as shown in properties
Q7),Q7),Q8),Q8), essentially there is only one type of such order relation
among conditionals. Consequently, all questions concerning deducts among
just conditionals can be - at least in theory - handled in a straightforward




32  Philip G. Calabrese, I. R. Goodman

way. But, it is obvious from the explicit forms that conjunctions and dis-
junctions take in the product space solution to the Basic Problem, closure
does not hold in general for these operations relative to being in simple con-
ditional form - although closure does hold for all of these operations relative
to the parent product space By. (See [24], sect. IV,C.)

Thus, the issue of characterizing the deductive closure - i.e., logical
closure of the set of deduct- of a given set of conditionals is no longer the
simple task as before. All of the above can be couched very naturally in
powerdomain terminology (see e.g. GUNTHER, [30] for background), where
we wish to characterize as simply as possible the following typical deduction
problems:

1. The deductive closure A*, relative to the entire product space alge-
bra, of any given set A of conditionals of interest, i.e.,

A* = comb (-, V)(ded (4)),

where ded(A) is the deduction class of A, or, equivalently, the upper pow-
erdomain of A, A#, i.e., the maximal class (via subclass inclusion) of full
deducts of A, i.e., for each (a|b) in A¥#, there is always some (c|d) in A such
that (c|d) deduces (a|b) : (c|d) < (alb).

2. Given any collections of conditionals A, B from By and any subcollec-
tions A; from comb(-, V)(A) and B; from comb(-, V)(B), find characterizing
criteria when:

(i) B, fully deduces A,, i.e., when A; ># By, i.e., for each element in
A, there is some element in B; which deduces the former (or the
former is > the latter).

(ii) B, efficiently deduces or causes A, i.e., when A, >By, i.e., for each

element in By, its deduction class always intersects with A;.

3. One can similarly couch in elementary powerdomain terms, full and
efficient deductions, mixes of deductions, sandwiches of deductions, etc. The
main point here is that all questions of deduction among conditional events
with antecedents and consequents from B and their naturally generated
logical combinations- in general, not conditional events, but more complex
forms - all lying in the same product space By, can be immediately trans-
lated into powerdomain issues, specialized to this situation. The product
space approach taken here is expected to provide tie-ins with current non-
monotonic logic systems, hopefully improving upon the empirical/hybrid
approaches of DuBois and PRADE [7] and CALABRESE [3] in the use of
conditionals.
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4. What specific conditional event deduction and related concepts can
be abstracted to the general powerdomain level, and perhaps contribute
new insights? Since the product space approach remains boolean relative
to the original underlying space of unconditional events, unlike the previous
approaches, the process of conditioning can now be thought of as a special
case of developing a particular type of functor from the standard category
Set back into Set. On the other hand, it is not too difficult to decompose
the entire negation b’ of the antecedent of any conditional event (alb) -
corresponding to the intermediate value of the three-valued logic form of
the interval of events approach into the union (8" x ab) v (b’ x b’ x ab) V
(= b'x(alb)) of those subevents contributing to the occurrence and the union
(' xa'b)v (b xb xa'b)Vv...(=b x (a]b)) of those contributing to the non
occurrence of the conditional event. The correspondence between these two
component parts and the entire negation characterizes the relation between
the two approaches, and somehow, should be reflected in the deeper category
theory setting above; in view of the previously-mentioned characterization
theorem for all possible truth-functional three-valued logics, this possibly
may shed new light on the relation between all such logics and classical
logic.
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